Главная | Регистрация | Вход | RSSПонедельник, 06.05.2024, 10:23

Сайт учителя математики и информатики МБОУ Школа №126 Прониной Н.А.

Меню сайта
Наш опрос
Оцените мой сайт
Всего ответов: 114
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Математические знаки

Бесконечность.  Дж.Валлис (1655).

Впервые встречается в трактате английского математика Джон Валиса "О конических сечениях".


Основание натуральных логарифмов.  Л.Эйлер (1736).

Математическая константа, трансцендентное число. Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614). Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Саму же константу впервые вычислил швейцарский математик Якоб Бернулли в ходе решения задачи о предельной величине процентного дохода. 

2,71828182845904523...

Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690–1691 годы. Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы abc и уже довольно широко использовались в иных целях, и e была первой «свободной» буквой.


Отношение длины окружности к диаметру.  У.Джонс (1706), Л.Эйлер (1736).

Математическая константа, иррациональное число. Число "пи", старое название – лудольфово число. Как и всякое иррациональное число, π представляется бесконечной непереодической десятичной дробью:

π=3,141592653589793... 

Впервые обозначением этого числа греческой буквой π воспользовался британский математик Уильям Джонс в книге «Новое введение в математику», а общепринятым оно стало после работ Леонарда Эйлера. Это обозначение происходит от начальной буквы греческих слов περιφερεια – окружность, периферия и περιμετρος – периметр.  Иоганн Генрих Ламберт доказал иррациональность π в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность π2. Лежандр, и Эйлер предполагали, чтоπ может быть трансцендентным, т.е. не может удовлетворять никакому алгебраическому уравнению с целыми коэффициентами, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.


Мнимая единица. Л.Эйлер (1777, в печати – 1794).

Известно, что уравнение х2=1 имеет два корня: 1 и –1. Мнимая единица – это один из двух корней уравнения х2=–1, обозначается латинской буквой i, ещё один корень: –i. Это обозначение предложил Леонард Эйлер, взявший для этого первую букву латинского слова imaginarius (мнимый). Он же распространил все стандартные функции на комплексную область, т.е. множество чисел, представимых в виде a+ib, где a и b – действительные числа. В широкое употребление термин «комплексное число» ввёл немецкий математик Карл Гаусс в 1831 году, хотя этот термин ранее использовал в том же смысле французский математик Лазар Карно в 1803 году.


Единичные векторы. У.Гамильтон (1853).

Единичные векторы часто связывают с координатными осями системы координат (в частности, с осями декартовой системы координат). Единичный вектор, направленный вдоль оси Х, обозначается i, единичный вектор, направленный вдоль оси Y, обозначается j, а единичный вектор, направленный вдоль оси Z, обозначается k. Векторы ijk называются ортами, они имеют единичные модули. Термин "орт" ввёл английский математик, инженер Оливер Хевисайд (1892), а обозначения ijk – ирландский математик Уильям Гамильтон.


Целая часть числа, антье.  К.Гаусс (1808).

Целой частью числа [х] числа х называется наибольшее целое число, не превосходящее х. Так, [5,3]=5, [–3,6]=–4. Функцию [х] называют также "антье от х". Символ функции «целая часть» ввёл Карл Гаусс в 1808 году. Некоторые математики предпочитают использовать вместо него обозначение E(x), предложенное в 1798 году Лежандром.


 

Угол параллельности.  Н.И. Лобачевский (1835).

На плоскости Лобачевского – угол между прямой b, проходящей через точку О параллельно прямой a, не содержащей точку О, и перпендикуляром из О на aα – длина этого перпендикуляра. По мере удаления точки О от прямой угол параллельности убывает от 90° до 0°. Лобачевский дал формулу для угла параллельности П(α)=2arctg eα/q, где q — некоторая постоянная, связанная с кривизной пространства Лобачевского.


Неизвестные или переменные величины.  Р. Декарт (1637).

В математике переменная – это величина, характеризующаяся множеством значений, которое она может принимать. При этом может иметься в виду как реальная физическая величина, временно рассматриваемая в отрыве от своего физического контекста, так и некая абстрактная величина, не имеющая никаких аналогов в реальном мире. Понятие переменной возникло в XVII в. первоначально под влиянием запросов естествознания, выдвинувшего на первый план изучение движения, процессов, а не только состояний. Это понятие требовало для своего выражения новых форм. Такими новыми формами и явились буквенная алгебра и аналитическая геометрия Рене Декарта. Впервые прямоугольную систему координат и обозначения х, у ввел Рене Декарт в своей работе «Рассуждение о методе» в 1637 году. Вклад в развитие координатного метода внес также Пьер Ферма, однако его работы были впервые опубликованы уже после его смерти. Декарт и Ферма применяли координатный метод только на плоскости. Координатный метод для трёхмерного пространства впервые применил Леонард Эйлер уже в XVIII веке.


Вектор.  О.Коши (1853).

С самого начала вектор понимается как объект, имеющий величину, направление и (необязательно) точку приложения. Зачатки векторного исчисления появились вместе с геометрической моделью комплексных чисел у Гаусса (1831). Развитые операции с векторами опубликовал Гамильтон как часть своего кватернионного исчисления (вектор образовывали мнимые компоненты кватерниона). Гамильтон предложил сам термин вектор (от латинского слова vectorнесущий) и описал некоторые операции векторного анализа. Этот формализм использовал Максвелл в своих трудах по электромагнетизму, тем самым обратив внимание учёных на новое исчисление. Вскоре вышли «Элементы векторного анализа» Гиббса (1880-е годы), а затем Хевисайд (1903) придал векторному анализу современный вид. Сам знак вектора ввёл в использование французский математик Огюстен Луи Коши в 1853 году.


  

Сложение, вычитание.  Я.Видман (1489).

Знаки плюса и минуса придумали, по-видимому, в немецкой математической школе «коссистов» (то есть алгебраистов). Они используются в учебнике Яна (Йоханнеса) Видмана «Быстрый и приятный счёт для всех торговцев», изданном в 1489 году. До этого сложение обозначалось буквой p (от латинского plus «больше») или латинским словом et (союз «и»), а вычитание – буквой m (от латинского minus «менее, меньше»). У Видмана символ плюса заменяет не только сложение, но и союз «и». Происхождение этих символов неясно, но, скорее всего, они ранее использовались в торговом деле как признаки прибыли и убытка. Оба символа вскоре получили общее распространение в Европе — за исключением Италии, которая ещё около века использовала старые обозначения.


  

Умножение.  У.Оутред (1631), Г.Лейбниц (1698).

Знак умножения в виде косого крестика ввёл в 1631 году англичанин Уильям Оутред. До него использовали чаще всего букву M, хотя предлагались и другие обозначения: символ прямоугольника (французский математик Эригон, 1634), звёздочка (швейцарский математик Иоганн Ран, 1659). Позднее Готфрид Вильгельм Лейбниц заменил крестик на точку (конец XVII века), чтобы не путать его с буквой x; до него такая символика встречалась у немецкого астронома и математика Региомонтана (XV век) и английского учёного Томаса Хэрриота (1560 –1621).


    

Деление.  И.Ран (1659), Г.Лейбниц (1684).

Уильям Оутред в качестве знака деления использовал косую черту /. Двоеточием деление стал обозначать Готфрид Лейбниц. До них часто использовали также букву D. Начиная с Фибоначчи, используется также горизонтальная черта дроби, употреблявшаяся ещё у Герона, Диофанта и в арабских сочинениях. В Англии и США распространение получил символ ÷ (обелюс), который предложил Иоганн Ран (возможно, при участии Джона Пелла) в 1659 году. Попытка Американского национального комитета по математическим стандартам (National Committee on Mathematical Requirements) вывести обелюс из практики (1923) оказалась безрезультатной.


Процент.  М. де ла Порт (1685).

Сотая доля целого, принимаемого за единицу. Само слово «процент» происходит от латинского "pro centum", что означает в переводе "на сто". В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращённо от cento). Однако наборщик принял это «cto» за дробь и напечатал "%". Так из-за опечатки этот знак вошёл в обиход.


Степени.  Р.Декарт (1637), И.Ньютон (1676).

Современная запись показателя степени введена Рене Декартом в его «Геометрии» (1637), правда, только для натуральных степеней с показателями больших 2. Позднее, Исаак Ньютон распространил эту форму записи на отрицательные и дробные показатели (1676), трактовку которых к этому времени уже предложили: фламандский математик и инженер Симон Стевин, английский математик Джон Валлис и французский математик Альбер Жирар.


Корни.  К.Рудольф (1525), Р.Декарт (1637), А.Жирар (1629).

Арифметический корень n-й степени из действительного числа а≥0, – неотрицательное число n-я степень которого равна а. Арифметический корень 2-й степени называется квадратным корнем и может записываться без указания степени: . Арифметический корень 3-й степени называется кубическим корнем. Средневековые математики (например, Кардано) обозначали квадратный корень символом Rx (от латинского Radix, корень). Современное обозначение впервые употребил немецкий математик Кристоф Рудольф, из школы коссистов, в 1525 году. Происходит этот символ от стилизованной первой буквы того же слова radix. Черта над подкоренным выражением вначале отсутствовала; её позже ввёл Декарт (1637) для иной цели (вместо скобок), и эта черта вскоре слилась со знаком корня. Кубический корень в XVI веке обозначался следующим образом: Rx.u.cu (от лат. Radix universalis cubica). Привычное нам обозначение корня произвольной степени начал использовать Альбер Жирар (1629). Закрепился этот формат благодаря Исааку Ньютону и Готфриду Лейбницу.


        

Логарифм, десятичный логарифм, натуральный логарифм. И.Кеплер (1624), Б.Кавальери (1632), А. Принсхейм (1893).

Термин "логарифм" принадлежит шотландскому математику Джону Неперу («Описание удивительной таблицы логарифмов», 1614); он возник из сочетания от греческих слов λογος (слово, отношение) и αριθμος (число). Логарифм у Дж. Непера – вспомогательное число для измерения отношения двух чисел. Современное определение логарифма впервые дано английским математиком Уильямом Гардинером (1742). По определению, логарифм числа b по основанию a ( 1, a > 0) – показатель степени m, в которую следует возвести число a (называемое основанием логарифма), чтобы получить b. Обозначается logab. Итак, m = logabесли a= b.

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Термин "натуральный логарифм" ввели Пьетро Менголи (1659) и Николас Меркатор (1668), хотя лондонский учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов.

До конца XIX века общепринятого обозначения логарифма не было, основание a указывалось то левее и выше символа log, то над ним. В конечном счёте математики пришли к выводу, что наиболее удобное место для основания – ниже строки, после символа log. Знак логарифма  – результат сокращения слова "логарифм" – встречается в различных видах почти одновременно с появлением первых таблиц логарифмов, например Log – у И. Кеплера (1624) и Г. Бригса (1631), log – у Б. Кавальери (1632). Обозначение ln для натурального логарифма ввёл немецкий математик Альфред Прингсхейм (1893).


 

Синус, косинус, тангенс, котангенс.  У.Оутред (сер. XVII века), И.Бернулли (XVIII в.), Л.Эйлер (1748, 1753). 

Сокращённые обозначения для синуса и косинуса ввёл Уильям Оутред в середине XVII века. Сокращённые обозначения тангенса и котангенса: tg, ctg введены Иоганном Бернулли в XVIII веке, они получили распространение в Германии и России. В других странах употребляются названия этих функций tan, cot предложенные Альбером Жираром ещё ранее, в начале XVII века. В современную форму теорию тригонометрических функций привёл Леонард Эйлер (1748, 1753), ему же мы обязаны и закреплением настоящей символики. Термин "тригонометрические функции" введён немецким математиком и физиком Георгом Симоном Клюгелем в 1770 году.

Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды), затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские переводчики не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба». Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus, имеющим то же значение. Термин «тангенс» (от лат. tangens – касающийся) был введен датским математиком Томасом Финке в его книге «Геометрия круглого» (1583).


Арксинус.  К.Шерфер (1772), Ж.Лагранж (1772).

Обратные тригонометрические функции – математические функции, которые являются обратными к тригонометрическим функциям. Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки "арк" (от лат. arc – дуга). К обратным тригонометрическим функциям обычно относят шесть функций: арксинус (arcsin), арккосинус (arccos), арктангенс (arctg), арккотангенс (arcctg), арксеканс (arcsec) и арккосеканс (arccosec). Впервые специальные символы для обратных тригонометрических функций использовал Даниил Бернулли (1729, 1736). Манера обозначать обратные тригонометрических функции с помощью приставки arc (от лат. arcus, дуга) появилась у австрийского математика Карла Шерфера и закрепилась благодаря французскому математику, астроному и механику Жозефу Луи Лагранжу. Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: sin–1 и 1/sin, но они не получили широкого распространения.


   

Гиперболический синус, гиперболический косинус.  В.Риккати (1757).

Первое появление гиперболических функций историки обнаружили в трудах английского математика Абрахама де Муавра (1707, 1722). Современное определение и обстоятельное их исследование выполнил итальянец Винченцо Риккати в 1757 году в работе «Opusculorum», он же предложил их обозначения: sh, ch. Риккати исходил из рассмотрения единичной гиперболы. Независимое открытие и дальнейшее исследование свойств гиперболических функций было проведено немецким математиком, физиком и философом Иоганном Ламбертом (1768), который установил широкий параллелизм формул обычной и гиперболической тригонометрии. Н.И. Лобачевский впоследствии использовал этот параллелизм, пытаясь доказать непротиворечивость неевклидовой геометрии, в которой обычная тригонометрия заменяется на гиперболическую.

Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе. Гиперболические функции выражаются через экспоненту и тесно связанных с тригонометрическими функциями: sh(x)=0,5(ex–e–x)ch(x)=0,5(ex+e–x). По аналогии с тригонометрическими функциями определены гиперболические тангенс и котангенс как отношения гиперболических синуса и косинуса, косинуса и синуса, соответственно.


Дифференциал.  Г.Лейбниц (1675, в печати 1684).

Главная, линейная часть приращения функции. Если функция y=f(x) одного переменного x имеет при x=xпроизводную, и приращение Δy=f(x0+?x)–f(x0функции f(x) можно представить в виде Δy=f'(x0)Δx+R(Δx)где член R бесконечно мал по сравнению с Δx. Первый член dy=f'(x0)Δx в этом разложении и называется дифференциалом функции f(x) в точке x0В работах Готфрида Лейбница, Якоба и Иоганна Бернулли слово "differentia" употреблялось в смысле "приращение", его И. Бернулли обозначал через Δ. Г. Лейбниц (1675, в печати 1684) для "бесконечно малой разности" использовал обозначение d – первую букву слова "differential", образованого им же от "differentia".


Неопределённый интеграл.  Г.Лейбниц (1675, в печати 1686).

Слово "интеграл" впервые в печати употребил Якоб Бернулли (1690). Возможно, термин образован от латинского integer – целый. По другому предположению, основой послужило латинское слово integro – приводить в прежнее состояние, восстанавливать. Знак  используется для обозначения интеграла в математике и представляет собой стилизованное изображение первой буквы латинского слова summa – сумма. Впервые он был использован немецким математиком основателем дифференциального и интегрального исчислений Готфридом Лейбницем в конце XVII века. Другой из основателей дифференциального и интегрального исчислений Исаак Ньютон в своих работах не предложил альтернативной символики интеграла, хотя пробовал различные варианты: вертикальную черту над функцией или символ квадрата, который стоит перед функцией или окаймляет её. Неопределённый интеграл для функции  y=f(x) — это совокупность всех первообразных данной функции.


 

Определённый интеграл.  Ж.Фурье (1819–1822).

Определённый интеграл функции f(x) с нижним пределом a и верхним пределом b можно определить как разность F(b) – F(a) = af(x)dx, где F(х) – некоторая первообразная функции f(x). Определённый интеграл af(x)dx численно равен площади фигуры, ограниченной осью абсцисс, прямыми x=a и x=b и графиком функции f(x). Оформление определённого интеграла в привычном нам виде предложил французский математик и физик Жан Батист Жозеф Фурье в начале XIX века.


Производная.  Г.Лейбниц (1675), Ж.Лагранж (1770, 1779).

Производная – основное понятие дифференциального исчисления, характеризующее скорость изменения функции f(x) при изменении аргумента x. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную в некоторой точке, называют дифференцируемой в данной точке. Процесс вычисления производной называется дифференцированием. Обратный процесс – интегрирование. В классическом дифференциальном исчислении производная чаще всего определяется через понятия теории пределов, однако исторически теория пределов появилась позже дифференциального исчисления.

Термин "производная" ввёл Жозеф Луи Лагранж в 1797 году, обозначения производной с помощью штриха – он же (1770, 1779), а dy/dx – Готфрид Лейбниц в 1675 году. Манера обозначать производную по времени точкой над буквой идёт от Ньютона (1691). Русский термин «производная функции» впервые употребил русский математик Василий Иванович Висковатов (1779–1812).


Частная производная.  А. Лежандр (1786), Ж.Лагранж (1797, 1801).

Для функций многих переменных определяются частные производные – производные по одному из аргументов, вычисленные в предположении, что остальные аргументы постоянны. Обозначения ∂f/x, z/y ввёл французский математик Адриен Мари Лежандр в 1786 году; fx&

Вход на сайт
Поиск
Календарь
«  Май 2024  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031
Архив записей
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Copyright MyCorp © 2024
    Создать бесплатный сайт с uCoz